Feshbach projection-operator partitioning for quantum open systems: Stochastic approach

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Feshbach Projection for the Dynamics of Open Quantum Systems.

We present a stochastic projection formalism for the description of quantum dynamics in bosonic or spin environments. The Schrödinger equation in the coherent state representation with respect to the environmental degrees of freedom can be reformulated by employing the Feshbach partitioning technique for open quantum systems based on the introduction of suitable non-Hermitian projection operato...

متن کامل

Projection Operator Approach to Constrained Systems

Recently, within the context of the phase space coherent state path integral quantisation of constrained systems, John Klauder introduced a reproducing kernel for gauge invariant physical states, which involves a projection operator onto the reduced Hilbert space of physical states, avoids any gauge fixing conditions, and leads to a specific measure for the integration over Lagrange multipliers...

متن کامل

Projection Operator Approach to Transport in Complex Single-Particle Quantum Systems

We discuss the time-convolutionless (TCL) projection operator approach to transport in closed quantum systems. The projection onto local densities of quantities such as energy, magnetization, particle number, etc. yields the reduced dynamics of the respective quantities in terms of a systematic perturbation expansion. In particular, the lowest order contribution of this expansion is used as a s...

متن کامل

Projection Operator in Adaptive Systems

The projection algorithm is frequently used in adaptive control and this note presents a detailed analysis of its properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 2012

ISSN: 1050-2947,1094-1622

DOI: 10.1103/physreva.85.032123